INTRODUCTION

During the course of any class, you will be required to process a great deal of information and since your knowledge of the subject will be tested, you will need an effective way to learn the concepts and remember them and study guides are a proven methodology that will help you outline and remember the important pieces of information. The Installation Rules Study Package is provided to do just that and to ensure that your understanding of the material covered in the Regulation Standards is solidified. It is designed to make your exam preparation less of a headache for you and to shorten your preparation time. It consists of the Study Guide, the Past Exam Papers with Memos and the Exam Simulator Software. The Study Package is designed to be easy-to-use instrument to help you pass the exams convincingly on the first try. The design of the Installation Rules Study Package is based on the principle that, for a product to be effective, it must be simple and easy to use.

ABOUT THE AUTHOR

The Author of the Installation Rules Study Package is a registered Installation Electrician in terms of the Electrical Installation Regulations. He passed the Installation Rules Exams with distinctions [Paper 1 with 92%, Paper 2 with 82%]. He has for the past few years thoroughly researched every topic that is covered in the Exams and his research revealed specific content areas and concepts that are critical for one to know, understand and apply in order to be victorious in the Exams. The author has taken that information and compiled the Installation Rules Study Package that is guaranteed to produce positive results. The Author is devoted to consistently provide the best Installation Rules Study Package and Support that not only meet the student's needs but also that surpass their expectations.

OUR OBJECTIVE

We have done our best in making sure that the Installation Rules Course objectives are met by providing our students with an excellent Study Package packed with detailed, step by step examples and many Exam–Style questions. The main objective of our Study Package is to give our students the Knowledge, the Practice and the Confidence necessary to pass their Exams with flying colours on their first try.
STUDY PACKAGE FEATURES

The Installation Rules Exams are not easy but with the right tools at your disposal and hard work you can make it. The Study Package consists of the Study Guide, Revision Exercises, the Exam Simulator Software and Past Exam Papers with Memos. These study tools ensures that your understanding of the material covered in the course is solidified and at the same time ensuring that all the objectives and aims of the Installation Rules course are satisfied. Past Exam papers together with memorandum are provided to give you an idea of how to answer Exam questions. The Installation Rules Study Package offer a self-paced method of preparing for the exams in the shortest possible time. The Student will go through all the sections of the regulation book without guessing which sections of the standards they need to focus on. In short, the tools focuses on all important areas of the course with great emphasis on sections that will be in the actual exam sitting. **We encourage our students to concentrate on the material presented in the Study Guide.**

THE STUDY GUIDE

The Study Package is completely updated to the latest electrical Regulation Book and Standards. The information provided in the Study Guide is divided into three sections: **Section 1** gives the Student carefully worked out examples of calculations, **Section 2** is divided into Modules – in these modules the Student is guided through the theory part of the course by answering questions similar to the ones they will face in the exam and **Section 3** consists of the revision exercises to test the Student's understanding of the material covered.

THE EXAM SIMULATOR

The Exam Simulator does not generate Exam questions haphazardly – most of the questions generated will be in the actual exam. What the Exam Simulator does is that it systematically generates ten Exam questions in Internet Explorer similar to the ones the student will face in the actual Exam session. The Exam Simulator helps to solidify the Student's understanding of the material covered in the regulation books while at the same time helps the Student to build the confidence necessary to face the actual exam sitting. Generate as many exam sessions as you like and for each exam session generated set aside 3 hours to answer the Exam questions.
WELCOME

We would like to welcome you to the **Installation Rules Paper Two Study Guide** and we thank you for investing in our study material. If you have never taken this Exam or have attempted it before, this Study Guide together with the accompanying Software will give you some idea of what to expect the actual Exam session to be like and to sharpen your skills on how to answer such Exam questions.

The Installation Rules Study Tools ensures that your understanding of the material covered in the Regulation Standards is solidified and also ensures that all the objectives and aims of the Installation Rules Course are satisfied - keep in mind that for the Installation Rules exams you are required to demonstrate *sufficient knowledge*, *understanding* and *application* of the regulation standards.

The information provided in this guide is divided into two sections: **Section 1** gives you worked out examples of calculations and some theory questions for Paper Two. Most of the examples are taken from Past Exam Papers. **Section 2** is divided into Modules – make sure to answer **ALL** the questions in these Modules. For ease of use each question in the Modules have **Page numbers** next to them indicating where to get the answer to that particular question in the Regulation Book. We have included answers to **Module 5**, and for answers to calculation questions please refer to Examples.

First, start and work through the Study Guide then next do the Assignments and Revision Exercises – the Revision Questions are in a separate file. For more revision and practice run the Exam Simulator and give yourself THREE hours per session to answer generated questions – you may use this as the final preparation for the Exam. You may also find it helpful to follow the **Study Time Table For Paper 2**. This Study Method requires 14 weeks before the Exam; Monday – Friday take 1 to 2 hours per day and on Saturday & Sunday spend at least 3 hours per day.

Used thus as instructed “The Study Method” is surely GUARANTEED to give you Sufficient Knowledge, Understanding, Practice and the Confidence required to pass Paper 2 Exam with flying colours on your first try.

“The best preparation for tomorrow is doing your best today, one bit at a time.”

“He who is well prepared has half won the battle.”

The Installation Rules Study Mate Team
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Study Time Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syllabus</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important Formulae</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance And Resistivity</td>
<td>19</td>
</tr>
<tr>
<td>Voltage Drop – What is it?</td>
<td></td>
</tr>
<tr>
<td>Voltage Drop – How do I calculate it?</td>
<td></td>
</tr>
<tr>
<td>Neutral Current</td>
<td></td>
</tr>
<tr>
<td>Touch Voltage</td>
<td></td>
</tr>
<tr>
<td>Load Moment</td>
<td></td>
</tr>
<tr>
<td>Power Calculations</td>
<td></td>
</tr>
<tr>
<td>AC Supply: PSCC Calculations</td>
<td></td>
</tr>
<tr>
<td>DC Supply: PSCC Calculations</td>
<td></td>
</tr>
<tr>
<td>General Knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Drop Calculation</td>
<td>37</td>
</tr>
<tr>
<td>Six Methods</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Drop Calculation</td>
<td>42</td>
</tr>
<tr>
<td>Six Methods</td>
<td></td>
</tr>
<tr>
<td>Specific Resistance</td>
<td></td>
</tr>
<tr>
<td>Monogram Table / Model</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Drop Calculation</td>
<td>53</td>
</tr>
<tr>
<td>Four Methods</td>
<td></td>
</tr>
<tr>
<td>Elaborate On The Findings</td>
<td></td>
</tr>
<tr>
<td>Which Method Is Better</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 4</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Drop Calculation</td>
<td>58</td>
</tr>
</tbody>
</table>
Four Methods
Elaborate On The Findings
Which Method Is Better

Example 5
Voltage Drop Calculation – **Single Phase**
The Actual Voltage Drop
The Actual Resistance
The Actual Current
The Actual Length

Example 6
Voltage Drop Calculation – **Single Phase**
Total Volt Drop
Total Resistance
The Actual Length

Example 7
Voltage Drop Calculation – **Single Phase**
Voltage Drop
% Voltage Drop
Minimum ECC Size

Example 8
Voltage Drop Calculation – **Single Phase**
Minimum Cable Size
Voltage Drop
% Volt Drop (Worst Case)
Main Protection
Current Unbalanced Factor
The Actual Resistance Of The ECC

Example 20
Voltage Drop Calculation – Three Phase
Correct Cable size
Length Of Cable

Example 21
Voltage Drop Calculation – Three Phase
Minimum Cable size
Voltage Drop

Example 22
PSCC Calculation: AC Supply
Calculate The PSCC
Calculate The Touch Voltage
The Total Loop Impedance

Example 23
PSCC Calculation: AC Supply
Calculate The PSCC
Calculate The Touch Voltage
The Total Loop Impedance

Example 24
PSCC Calculation: AC Supply
Calculate The PSCC
Example 25

PSCC Calculation: **AC Supply**
- Three Phase PSCC
- Phase To Phase PSCC
- Voltage Drop
- Minimum ECC Size
- Touch Voltage

Example 26

PSCC Calculation: **AC Supply**
- Three Phase PSCC
- Voltage Drop
- Minimum ECC Size
- Touch Voltage

Example 27

PSCC Calculation: **AC Supply**
- Three Phase PSCC
- Touch Voltage
- Total Loop Impedance
- Voltage Drop

Example 28

PSCC Calculation: **DC Supply**
- The PSCC Of A DC Supply

Example 29

PSCC Calculation: **DC Supply**
- The PSCC Of A DC Supply
Example 30
PSCC Calculation: **DC Supply**
The Area Of Cable
Alternative Method
Voltage Drop

Example 31
PSCC Calculation: **DC Supply**
The Area Of Cable
Alternative Method
Voltage Drop

Example 32
PSCC Calculation: **DC Supply**
The Length Of Cable
Alternative Method
Voltage Drop

Example 33
PSCC Calculation: **DC Supply**
The Length Of Cable
Alternative Method
Voltage Drop

Example 34
PSCC Calculation: **DC Supply**
Current Flow

Example 35
Conductors In Conduit – **Annexure F**

Example 36
Conductors In Conduit – **Annexure F**

Example 37
Conductors In Conduit – **Annexure F**
Example 38
Conductors In Conduit – Annexure F

Example 39
Conductors In Conduit – Annexure F

Example 40
Conductors In Conduit – Annexure F

Example 41
Conductors In Conduit – Annexure F

Example 42
Conductors In Conduit – Annexure F

Example 43
General Calculations / Basic Principles
Exercises

Example 44
General Calculations / Basic Principles
Factors affecting resistance of a conductor
Maximum value of the protection device
Maximum value of the protection device
Maximum value of the protection device
Maximum length of the ECC
Maximum length of the ECC
Minimum size of the ECC
Minimum size of the ECC
Minimum size of the ECC
Length of cable for a 3kW water heater
Other four test that can also be done
Touch Voltage for a 3kW water heater
Other four test that can also be done
Touch Voltage for a 2kW water heater
Other four test that can also be done

Example 45

Accuracy And Resolution

Example 46

Earth Loop Impedance Test
Prospective Short-Circuit Test

Example 47

Earth Electrode Test

Example 48

Insulation Resistance Test

Module 1
SANS 10142: Section 6

Module 2
SANS 10142: Section 6

Module 3
SANS 10142: Section 6

Module 4
SANS 10142: Section 6

Module 5
SANS 10142: Section 6
The following Tables will be required in solving many of paper 2 calculations:

- Table 6.3 (b)
- Table 6.4 (b)
- Table 6.8
- Table 6.22
- Table 6.23
- Table 6.24
- Table 6.28
- Table D.1
- Table D.2
- Table D.3
METHOD 6

In the case of a load with impedance, the voltage drop can be calculated using the following:

\[
V_d = \frac{Fv \times I \times (R \cos \Phi + X \sin \Phi) \times L}{1000}
\]

- \(V_d\) is the voltage drop in Volt
- \(Fv\) is the multiplication factor determined from Table E.3
- \(I\) is the current in Amperes
- \(R\) is the resistance in Ohms per kilometer from Table D.1
- \(X\) is the reactance in Ohms per kilometer from Table D.1
- \(L\) is the length in Meters
- \(\cos \theta\) is the Power Factor of the connected load

METHOD 7

If the load is either inductive or capacitive we apply Ohm’s Law:

\[
V_d = I \times R
\]

- \(I\) is the current in Amperes
- \(R = X_L\) for an inductive load = \(2\pi fL\)
- \(R = X_C\) for a capacitive load = \(1/2\pi fC\)
- \(f\) is the frequency in Hertz
- \(L\) is the inductance in Henrys
- \(C\) is the capacitance in Farads